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Abstract: Presented is a solution for recovering the wavefront and an extended object. It builds 
upon the VSM architecture and deconvolution algorithms. Simulations are shown for recovering 
the wavefront and extended object from noisy data. 
OCIS codes: ( l 00.5070) Phase retrieval; ( I 00.1830) Deconvolution; (0 l 0. 7350) Wave-front sensing; 

1. Introduction 

Phase retrieval is'an algorithm used to recover the exit-pupil wavefront and thus, to measure or recover the deviation 
of the system from the desired optical system, [1]. The Variable Sampling Mapping (VSM) is a modification to the 
the Hybrid Diversity Algorithm (HDA) [2], which is an iterative-transform phase-retrieval algorithm based on the 
Misell-Gerchberg-Saxton algorithm [3,4]. HDA is unique because it has an adaptive diversity kernel, which 
increases the dynamic range of earlier work and solves an image registration problem. VSM is a method for 
enforcing a more general amplitude constraint, which allows one to incorporate in the fotward and backward model 
various source illuminations, detector properties, and noise environments, e.g. broadband, under-sampled, extended 
objects, jitter, etc. [5]. VSM, like other phase-retrieval algorithms, makes use of images recorded when the optical 
system is illuminated by a point source or a known object. Accurate estimation of the wavefront requires good 
knowledge of the irradiance distribution of the source, and a model for opto-mechanical disturbances (like jitter) that 
were present during the recording of the images. This assumption makes the separation of various image-plane 
convolution kernels problematic, for example jitter, extended objects, etc. In most situations, the jitter or the object 
being imaged is unknown or estimated, and this limited knowledge impacts the accuracy of estimating the exit-pupil 
wavefront. Thus, one must be able to recover the point-source convolution kernel in addition to the wavefront. 
Phase diversity and blind-deconvolution are well-established object and wavefront estimation techniques, [6-9]. To 
date, most solutions to the phase-diversity problem are parametric, e.g. Zernikes, point-by-point, etc. Ultimately 
minimizing an error-metric function using non-linear optimization to find a solution. These solutions can be very 
computationally demanding, requiring an error metric to be evaluated hundreds or thousands of times. 

· 2. Algorithm Overview 

The purpose of the algorithm described here is to build upon 
VSM and various deconvolution algorithms, to estimate the 
unknown object shape and pupil wavefront. We show in this 
paper that VSM, when provided the convolution kernel 
(object, jitter, etc) and additional optical parameters, it can 
accurately recover the exit-pupil wavefront. There are 
numerous approaches to deconvolution, suitable for a wide 
variety of applications, [10-12]. By combining VSM and 
deconvolution, one is able to simultaneously recover the exit 
pupil wavefront and the image-plane convolution kernel. 
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Figur~ 1 shows a ~lock ~i~~ o_fthe algorithm .. The Figure 1: Iterative-Transform Phase Diversity 
algonthm starts with an 1mtial esttmate for the obJect and 
phase. Then, VSM phase retrieval estimates an improved wavefront, and a model of the of the point-spread function 
(PSF). The PSF is deconvolved with the data to produce an improved estimate of the object. The process is 
repeated until convergence criteria are met. 

3. Simulations 

The Hybrid Diversity Algorithm (HDA) [2] for phase retrieval is the iterative-transform "engine" used with VSM 
for this study. Shown in Figures 2 and 3 are the results for an example simulation for recovering the wavefront and 
the extended object. For this simulation, the extended object is a two-dimensional Gaussian function. Furthermore, 
four defocused images were used as input to the phase-retrieval algorithm, with various noise sources and 
uncertainties modeled in the simulated data. For this ·single realization, the major-axis length-scale CJAand the 
minor-axis length aa are recovered with an error of 8% and 3%, respectively, and the low-order Zernikes ( defined as 
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Zernikes 4-21) of the wavefront are recovered with a total error oOJ118 RMS, as shown in Figure 3. The full 
wavefront recovery error is dominated by high spatial frequencies in the wavefront; these high-frequency errors are 
caused by the noise sources in the detector, particularly visible in the wings of the MTF plots shown in Figure 2. 
For this simulation, two additional cases where considered, but are not shown graphically: 1) The extended object 
was modeled incorrectly as a point source and not updated during retrieval, and only the wavefront was retrieved, · 
and 2) perfect knowledge of the extended object was provided to phase retrieval, and only the wavefront was 
retrieved. These two cases give a context for the results described above and demonstrate the importance of object 
recovery within phase retrieval. For case 1, the low order wavefront was recovered with an error o0./38 RMS and 
this error was dominated by power, astigmatism, and spherical. For case 2, the low order wavefront error was 
recovered with an error oOJ235 RMS. 
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Figure 3: Unknown and Recovered Extended Object and Phase 
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